尤物免费在线观看_免费又色又爽又黄的小说软件_亚洲中文字幕另类图片专区_我要看免费的毛片_最近最新高清中文字幕大全_欧美性爱高清在线_性爱视屏爽妇网_高清国内白嫩美女在线观看_国产色久国产综合视频_亚洲黄色操B视频

雙面守護(hù)者:解碼Toll樣受體在免疫與疾病中的關(guān)鍵角色

雙面守護(hù)者:解碼Toll樣受體在免疫與疾病中的關(guān)鍵角色

 

1. Toll樣受體家族簡(jiǎn)介

Toll樣受體(TLR)是一組模式識(shí)別受體,在免疫系統(tǒng)的發(fā)育和維持中發(fā)揮著重要作用。這些受體可識(shí)別外來病原體相關(guān)分子模式(PAMP),以及細(xì)胞損傷的內(nèi)源性副產(chǎn)物,損傷相關(guān)分子模式(DAMP,通過TLR的信號(hào)傳導(dǎo)導(dǎo)致促炎細(xì)胞因子和其他炎癥反應(yīng)介質(zhì)的產(chǎn)生。因此,TLR及其信號(hào)通路對(duì)于先天免疫系統(tǒng)和適應(yīng)性免疫系統(tǒng)的功能都至關(guān)重要。

1.1 TLR家族結(jié)構(gòu)

TLRI型跨膜蛋白,含有配體識(shí)別富含亮氨酸重復(fù)序列(LRR)結(jié)構(gòu)域、跨膜結(jié)構(gòu)域和Toll/白細(xì)胞介素1受體(TIR)同源結(jié)構(gòu)域。LRR結(jié)構(gòu)域負(fù)責(zé)配體識(shí)別,而細(xì)胞質(zhì)TIR結(jié)構(gòu)域通過與其銜接蛋白相互作用來啟動(dòng)下游信號(hào)級(jí)聯(lián)反應(yīng)。迄今為止,已在人類中鑒定出10個(gè)TLRTLR1-10)。大多數(shù)TLR激活后以同源二聚體行使功能,但TLR2除外,TLR2TLR1TLR6以異二聚體形式行使功能。

 

1 TLR的結(jié)構(gòu)域示意圖

(圖片源于《Protein Sci[1]

1.2 TLR家族分布

人類中的10個(gè)TLR在功能上分為兩個(gè)亞組。一組由TLR1、TLR2TLR4、TLR5、TLR6TLR10組成,它們定位于細(xì)胞膜,主要識(shí)別脂質(zhì)、脂蛋白和蛋白質(zhì)等細(xì)菌成分。另一組由TLR3TLR7、TLR8TLR9組成,它們定位于內(nèi)體/溶酶體,主要識(shí)別微生物核酸。TLR在多種造血細(xì)胞和非造血細(xì)胞中表達(dá),包括效應(yīng)免疫細(xì)胞(如樹突狀細(xì)胞、巨噬細(xì)胞、淋巴細(xì)胞、粒細(xì)胞)、造血干細(xì)胞和祖細(xì)胞以及非免疫細(xì)胞。

1.3 TLR信號(hào)傳導(dǎo)途徑

TLR的信號(hào)傳導(dǎo)涉及細(xì)胞內(nèi)銜接蛋白的募集,最終導(dǎo)致轉(zhuǎn)錄因子的激活以及促炎細(xì)胞因子的產(chǎn)生。除TLR3外,大多數(shù)活化的TLR招募MyD88IRAK家族的成員(包括IRAK1、IRAK2IRAK4)。這些蛋白質(zhì)共同形成“Myddosome”。TRAF6隨后被招募到該復(fù)合物中,刺激TAK1,隨后激活NF-κBMAPK通路,并產(chǎn)生促炎細(xì)胞因子。TLR3募集TRIF而不是MyD88,TLR4通過MyD88依賴性TRIF依賴性兩條途徑傳導(dǎo)信號(hào)。TRIFTRAF3結(jié)合,然后招募TBK1IKKε,從而激活IRF3并刺激I型干擾素的產(chǎn)生。此外,TRIFTRAF6相互作用,促進(jìn)NF-κBMAPK通路的激活。

 

2 TLR通過MyD88依賴性或TRIF依賴性途徑傳導(dǎo)信號(hào)

(圖片源于《Cold Spring Harb Perspect Biol[2]

 

2. TLR信號(hào)傳導(dǎo)與癌癥的相關(guān)研究

通過TLRs對(duì)免疫系統(tǒng)的外源性激活一方面可能是一種抗癌策略,但另一方面會(huì)加劇潛在的慢性炎癥,這反過來又會(huì)進(jìn)一步有利于癌癥的進(jìn)展。在慢性阻塞性肺疾?。?/span>COPD)背景下的K-ras突變小鼠中,敲除TLR2、TLR4TLR9可降低腫瘤負(fù)荷、減少血管生成和腫瘤細(xì)胞增殖,并伴有腫瘤細(xì)胞凋亡增加和腫瘤微環(huán)境重新編程為抗腫瘤環(huán)境[3]TLR9在前列腺癌(PCa)中高表達(dá),與區(qū)域淋巴結(jié)受累和PCa侵襲性相關(guān)[4]。TLR4PCa細(xì)胞系、肝細(xì)胞癌(HCC)增殖和侵襲能力以及低生存率相關(guān),是革蘭氏陰性肺炎增強(qiáng)的非小細(xì)胞肺癌(NSCLC)轉(zhuǎn)移的可行治療靶點(diǎn)[5-7]。阿霉素誘導(dǎo)的HMGB1釋放會(huì)激活乳腺癌細(xì)胞中的TLR2信號(hào)傳導(dǎo),從而導(dǎo)致化療耐藥表型[8]。與此相反,TLR2通過激活細(xì)胞內(nèi)在細(xì)胞周期停滯途徑和促炎衰老相關(guān)分泌表型來抑制肺癌的早期進(jìn)展[9]。TLR介導(dǎo)的PI3K激活通過產(chǎn)生半乳糖凝集素1調(diào)節(jié)卵巢癌的侵襲和轉(zhuǎn)移[10]。抑制TLR信號(hào)傳導(dǎo)可改善促炎細(xì)胞因子的產(chǎn)生并減少二乙基亞硝胺誘導(dǎo)的肝癌發(fā)生[11]。這些研究突出了TLR信號(hào)傳導(dǎo)在癌癥治療中的潛在價(jià)值。

 

3 TLR2依賴性化療耐藥機(jī)制的示意圖

(圖片源于《Oncoimmunology[8]

 

3. TLR信號(hào)傳導(dǎo)與心血管疾病的相關(guān)研究

TLR的激活在心血管疾病的發(fā)展、進(jìn)展和結(jié)果中起著重要作用。TLR1、TLR2TLR5、TLR6TLR7通過增強(qiáng)巨噬細(xì)胞積累和T細(xì)胞反應(yīng)性,調(diào)節(jié)病變和全身炎癥促進(jìn)動(dòng)脈粥樣硬化進(jìn)展[12-15]TLR2信號(hào)傳導(dǎo)對(duì)于保護(hù)心臟免受小鼠衰老相關(guān)的不良重塑和收縮功能障礙至關(guān)重要[16]。ANG II誘導(dǎo)的高血壓和心臟肥大與TLR4TLR3的差異激活有關(guān)[17,18]。TLR9是高血壓中血管周圍脂肪組織功能障礙的關(guān)鍵介質(zhì),導(dǎo)致炎癥、氧化應(yīng)激和血管損傷[19]。研究顯示TLR3是主動(dòng)脈瓣鈣化保守途徑中的關(guān)鍵元素[20]TLR4MyD88之間的新型SNP相互作用與冠狀動(dòng)脈疾病風(fēng)險(xiǎn)增加相關(guān)[21]。TLR6通過氧化應(yīng)激和炎癥反應(yīng)促進(jìn)了心肌纖維化的進(jìn)展[22]。這些研究表明更好地了解心血管疾病中TLR信號(hào)傳導(dǎo)可能有助于開發(fā)靶向TLR的新療法。

 

4 ANG II對(duì)高血壓和心臟肥大的差異效應(yīng)模型示意圖

(圖片源于《Am J Physiol Heart Circ Physiol[17]

 

4. TLR信號(hào)傳導(dǎo)與肺部疾病的相關(guān)研究

由于肺部暴露于多種傳染源、抗原和宿主來源的危險(xiǎn)信號(hào),肺部的基質(zhì)細(xì)胞和髓系細(xì)胞表達(dá)TLR聚集體,這些TLR可以感知DAMP以及PAMP并觸發(fā)涉及宿主防御的TLR相關(guān)信號(hào)傳導(dǎo)。TLR1TLR10基因的變異增加了毛細(xì)支氣管炎后哮喘的風(fēng)險(xiǎn)[23],TLR7TLR8可能賦予對(duì)哮喘的易感性[24]。TLR2TLR4中的SNP與慢性阻塞性肺?。?/span>COPD)的嚴(yán)重程度和疾病進(jìn)展相關(guān)[25]TLR7通過肥大細(xì)胞活性介導(dǎo)肺氣腫和COPD[26]。抑制TLR2、TLR6、TLR3TLR4介導(dǎo)的NF-κBMAPK通路減輕肺炎支原體、LPS、抗體介導(dǎo)的輸血相關(guān)的肺損傷和二氧化硅誘導(dǎo)的肺纖維化[27-32]。TLR4表達(dá)誘導(dǎo)炎癥的持續(xù)激活,巨噬細(xì)胞病理性轉(zhuǎn)移,是COVID-19致死的機(jī)制之一[33]。TLR5的抑制消除了囊性纖維化氣道細(xì)胞在暴露于銅綠假單胞菌后產(chǎn)生的破壞性炎癥反應(yīng)[34]。肺挫傷后的損傷細(xì)胞通過TLR9激活急性炎癥反應(yīng)[35]。因此抑制TLR可能是肺損傷的新治療策略。

 

5. TLR信號(hào)傳導(dǎo)與炎癥性腸病的相關(guān)研究

TLR作為腸道微生物群的傳感器,在維持腸道穩(wěn)態(tài)、控制免疫反應(yīng)和塑造微生物群方面發(fā)揮著關(guān)鍵作用。TLR1、TLR2TLR5TLR6基因中的非同義變異與克羅恩?。?/span>CD)和潰瘍性結(jié)腸炎(UC)之間存在關(guān)聯(lián)[36,37]。ERSTLR2在炎癥性腸病(IBD)中上調(diào),ERS可能促進(jìn)TLR2通路介導(dǎo)的炎癥反應(yīng)[38]。抑制TLR2/NF-κB信號(hào)通路的激活可有效預(yù)防葡聚糖硫酸鈉(DSS)誘導(dǎo)的IBD[39]。TLR3介導(dǎo)CCL20、CXCL10在結(jié)腸上皮細(xì)胞中的表達(dá),參與IBD中的活動(dòng)性炎癥[40,41]。抑制TLR4/NF-κB/HIF-1α軸來增強(qiáng)UC治療結(jié)局,從而減輕炎癥反應(yīng),改善結(jié)腸病變[42,43]。激活TLR4/NF-κB通路加重DSS誘導(dǎo)的IBD的炎癥和焦亡[44]。TLR6是腸道相關(guān)淋巴組織中Th1Th17反應(yīng)的重要驅(qū)動(dòng)因素[45]。與前面這些研究相反,TLR3TLR7識(shí)別駐留病毒介導(dǎo)的干擾素β產(chǎn)生改善腸道炎癥[46],激活TLR9信號(hào)通路改善活動(dòng)性UC患者的臨床癥狀[47]。這些發(fā)現(xiàn)為靶向TLR信號(hào)傳導(dǎo)治療IBD提供幫助。

 

5 TLR4/NF-κB/HIF-1α通路促進(jìn)UC炎癥的分子機(jī)制

(圖片源于《Drug Des Devel Ther[42]

 

6. TLR信號(hào)傳導(dǎo)與神經(jīng)退行性疾病的相關(guān)研究

TLR的激活能夠誘導(dǎo)對(duì)中樞神經(jīng)系統(tǒng)損傷或感染的免疫和炎癥反應(yīng)。靶向抑制TLR2、TLR4通路介導(dǎo)的神經(jīng)炎癥改善帕金森病的運(yùn)動(dòng)和認(rèn)知障礙[48,49]。抑制TLR4/NF-κB信號(hào)通路可以通過抑制神經(jīng)炎癥和細(xì)胞凋亡來改善誘導(dǎo)的記憶功能障礙[50]。神經(jīng)膠質(zhì)細(xì)胞中TLR4信號(hào)傳導(dǎo)增強(qiáng)促進(jìn)肌萎縮側(cè)索硬化癥(ALS)小鼠的疾病進(jìn)展[51]。microRNAssRNA可以充當(dāng)信號(hào)分子,激活中樞神經(jīng)系統(tǒng)中的TLR7信號(hào)傳導(dǎo),促進(jìn)神經(jīng)變性和神經(jīng)炎癥[52,53]。TLR9信號(hào)傳導(dǎo)的激活會(huì)通過誘導(dǎo)氧化應(yīng)激和炎癥來加劇神經(jīng)退行性變[54]。相反,另有研究表明TLR2作為骨髓來源免疫細(xì)胞的內(nèi)源性受體有助于清除有毒;在TLR2缺乏的情況下,認(rèn)知能力下降會(huì)顯著加速[55]。因此,TLR可以作為開發(fā)神經(jīng)保護(hù)藥物的潛在藥物病理學(xué)靶點(diǎn)。

 

云克隆助力科學(xué)研究,為廣大科研人員提供相關(guān)檢測(cè)試劑產(chǎn)品,相關(guān)靶標(biāo)核心貨號(hào)如下:

靶標(biāo)

核心貨號(hào)

靶標(biāo)

核心貨號(hào)

靶標(biāo)

核心貨號(hào)

BTK

B915

JNK1

B156

RIPK2

B786

CD14

A685

JNK2

D576

SARM1

M182

CD36

B530

JunB

H765

SIGIRR

M229

c-Jun

B292

LY96

H705

TANK

J823

IFNa

A033

MAP2K3

D563

TICAM1

H022

IFNb

A222

MAP2K4

D564

TICAM2

H021

IkBa

B848

MAP2K6

B721

TIRAP

N888

IkBb

B849

MAP2K7

D560

TLR1

B988

IkBe

E700

MAP3K7

D567

TLR10

B992

IkBKb

J822

MAP3K7IP1

L705

TLR2

A663

IkBKg

J820

MAPK11

B435

TLR3

B989

IKKA

K407

MAPK12

D577

TLR4

A753

IL1b

A563

MAPK13

D578

TLR5

B990

IL1RL1

H820

MAPK14

B206

TLR6

A683

IL6

A079

MARCO

C614

TLR7

B950

IL8

A080

MSR1

B591

TLR8

B991

IRAK1

B514

MyD88

B707

TLR9

A709

IRAK2

B515

NFkB

B824

TNFa

A133

IRAK3

B520

NFkB2

B825

TRAF3

G753

IRAK4

B518

NFKB3

A616

TRAF6

G751

IRF3

B589

RelB

B826

TRAM1

F824

IRF8

B776

RIPK1

E640



更多科研試劑,歡迎訪問云克隆官方網(wǎng)站:http://m.19230.cn/

 

 

參考文獻(xiàn)

[1]Asami J, Shimizu T. Structural and functional understanding of the toll-like receptors. Protein Sci. 2021;30(4):761-772.

[2]Lim KH, Staudt LM. Toll-like receptor signaling. Cold Spring Harb Perspect Biol. 2013;5(1):a011247.

[3]Velasco WV, Khosravi N, Castro-Pando S, et al. Toll-like receptors 2, 4, and 9 modulate promoting effect of COPD-like airway inflammation on K-ras-driven lung cancer through activation of the MyD88/NF-?B pathway in the airway epithelium. Front Immunol. 2023;14:1118721.

[4]Kalantari E, Abolhasani M, Roudi R, et al. Co-expression of TLR-9 and MMP-13 is associated with the degree of tumour differentiation in prostate cancer. Int J Exp Pathol. 2019;100(2):123-132.

[5]Takahashi I, Takagi K, Yamaguchi-Tanaka M, et al. Toll-like receptor (TLR) 4 is a potent prognostic factor in prostate cancer associated with proliferation and invasion. Pathol Res Pract. 2024;260:155379.

[6]Liu WT, Jing YY, Yu GF, et al. Toll like receptor 4 facilitates invasion and migration as a cancer stem cell marker in hepatocellular carcinoma. Cancer Lett. 2015;358(2):136-143.

[7]Gowing SD, Chow SC, Cools-Lartigue JJ, et al. Gram-Negative Pneumonia Augments Non-Small Cell Lung Cancer Metastasis through Host Toll-like Receptor 4 Activation. J Thorac Oncol. 2019;14(12):2097-2108.

[8]Di Lorenzo A, Bolli E, Ruiu R, et al. Toll-like receptor 2 promotes breast cancer progression and resistance to chemotherapy. Oncoimmunology. 2022;11(1):2086752.

[9]Millar FR, Pennycuick A, Muir M, et al. Toll-like receptor 2 orchestrates a tumor suppressor response in non-small cell lung cancer. Cell Rep. 2022;41(6):111596.

[10]Park GB, Chung YH, Kim D. Induction of galectin-1 by TLR-dependent PI3K activation enhances epithelial-mesenchymal transition of metastatic ovarian cancer cells. Oncol Rep. 2017;37(5):3137-3145.

[11]Fan X, He C, Jing W, et al. Intracellular Osteopontin inhibits toll-like receptor signaling and impedes liver carcinogenesis. Cancer Res. 2015;75(1):86-97.

[12]Mullick AE, Tobias PS, Curtiss LK. Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest. 2005;115(11):3149-3156.

[13]Curtiss LK, Black AS, Bonnet DJ, Tobias PS. Atherosclerosis induced by endogenous and exogenous toll-like receptor (TLR)1 or TLR6 agonists. J Lipid Res. 2012;53(10):2126-2132.

[14]Ellenbroek GH, van Puijvelde GH, Anas AA, et al. Leukocyte TLR5 deficiency inhibits atherosclerosis by reduced macrophage recruitment and defective T-cell responsiveness. Sci Rep. 2017;7:42688.

[15]Liu CL, Santos MM, Fernandes C, et al. Toll-like receptor 7 deficiency protects apolipoprotein E-deficient mice from diet-induced atherosclerosis. Sci Rep. 2017;7(1):847.

[16]Spurthi KM, Sarikhani M, Mishra S, et al. Toll-like receptor 2 deficiency hyperactivates the FoxO1 transcription factor and induces aging-associated cardiac dysfunction in mice. J Biol Chem. 2018;293(34):13073-13089.

[17]Singh MV, Cicha MZ, Nunez S, Meyerholz DK, Chapleau MW, Abboud FM. Angiotensin II-induced hypertension and cardiac hypertrophy are differentially mediated by TLR3- and TLR4-dependent pathways. Am J Physiol Heart Circ Physiol. 2019;316(5):H1027-H1038.

[18]Dange RB, Agarwal D, Masson GS, et al. Central blockade of TLR4 improves cardiac function and attenuates myocardial inflammation in angiotensin II-induced hypertension. Cardiovasc Res. 2014;103(1):17-27.

[19]Carvalho KFS, de Lima JF, Silva JLM, et al. Toll-like receptor 9 contributes to perivascular adipose tissue dysfunction in spontaneously hypertensive rats. Eur J Pharmacol. 2025;998:177524.

[20]Gollmann-Tepek?ylü C, Graber M, Hirsch J, et al. Toll-Like Receptor 3 Mediates Aortic Stenosis Through a Conserved Mechanism of Calcification. Circulation. 2023;147(20):1518-1533.

[21]Sun D, Sun L, Xu Q, et al. SNP-SNP Interaction between TLR4 and MyD88 in Susceptibility to Coronary Artery Disease in the Chinese Han Population. Int J Environ Res Public Health. 2016;13(3):278.

[22]Zhang Y, Zhang Y. Toll-like receptor-6 (TLR6) deficient mice are protected from myocardial fibrosis induced by high fructose feeding through anti-oxidant and inflammatory signaling pathway. Biochem Biophys Res Commun. 2016;473(2):388-395.

[23]Korppi M, T?rm?nen S. Toll-like receptor 1 and 10 variations increase asthma risk and review highlights further research directions. Acta Paediatr. 2019;108(8):1406-1410.

[24]M?ller-Larsen S, Nyegaard M, Haagerup A, Vestbo J, Kruse TA, B?rglum AD. Association analysis identifies TLR7 and TLR8 as novel risk genes in asthma and related disorders. Thorax. 2008;63(12):1064-1069.

[25]Budulac SE, Boezen HM, Hiemstra PS, et al. Toll-like receptor (TLR2 and TLR4) polymorphisms and chronic obstructive pulmonary disease. PLoS One. 2012;7(8):e43124.

[26]Liu G, Haw TJ, Starkey MR, et al. TLR7 promotes smoke-induced experimental lung damage through the activity of mast cell tryptase. Nat Commun. 2023;14(1):7349.

[27]Ding N, Lei A, Shi Z, Xiang L, Wei B, Wu Y. Total Flavonoids from Camellia oleifera Alleviated Mycoplasma pneumoniae-Induced Lung Injury via Inhibition of the TLR2-Mediated NF-κB and MAPK Pathways. Molecules. 2023;28(20):7077.

[28]Fang X, Song T, Zheng L, et al. Targeting mast cell activation alleviates anti-MHC I antibody and LPS-induced TRALI in mice by pharmacologically blocking the TLR3 and MAPK pathway. Biomed Pharmacother. 2024;180:117456.

[29]Zhu Y, Han Q, Wang L, et al. Jinhua Qinggan granules attenuates acute lung injury by promotion of neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway. J Ethnopharmacol. 2023;301:115763.

[30]Zhou J, Peng Z, Wang J. Trelagliptin Alleviates Lipopolysaccharide (LPS)-Induced Inflammation and Oxidative Stress in Acute Lung Injury Mice. Inflammation. 2021;44(4):1507-1517.

[31]Zhang Y, Liu F, Jia Q, et al. Baicalin alleviates silica-induced lung inflammation and fibrosis by inhibiting TLR4/NF-?B pathway in rats. Physiol Res. 2023;72(2):221-233.

[32]Zou M, Yang L, Niu L, et al. Baicalin ameliorates Mycoplasma gallisepticum-induced lung inflammation in chicken by inhibiting TLR6-mediated NF-κB signalling. Br Poult Sci. 2021;62(2):199-210.

[33]Pedicillo MC, De Stefano IS, Zamparese R, et al. The Role of Toll-like Receptor-4 in Macrophage Imbalance in Lethal COVID-19 Lung Disease, and Its Correlation with Galectin-3. Int J Mol Sci. 2023;24(17):13259.

[34]Blohmke CJ, Victor RE, Hirschfeld AF, et al. Innate immunity mediated by TLR5 as a novel antiinflammatory target for cystic fibrosis lung disease. J Immunol. 2008;180(11):7764-7773.

[35]Suresh MV, Thomas B, Dolgachev VA, et al. Toll-Like Receptor-9 (TLR9) is Requisite for Acute Inflammatory Response and Injury Following Lung Contusion. Shock. 2016;46(4):412-419.

[36]Pierik M, Joossens S, Van Steen K, et al. Toll-like receptor-1, -2, and -6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm Bowel Dis. 2006;12(1):1-8.

[37]Sheridan J, Mack DR, Amre DK, et al. A non-synonymous coding variant (L616F) in the TLR5 gene is potentially associated with Crohn's disease and influences responses to bacterial flagellin. PLoS One. 2013;8(4):e61326.

[38]Wu W, Zhao Y, Hu T, et al. Endoplasmic reticulum stress is upregulated in inflammatory bowel disease and contributed TLR2 pathway-mediated inflammatory response. Immunopharmacol Immunotoxicol. 2024;46(2):192-198.

[39]Chen Y, Jin T, Zhang M, et al. Flavokawain B inhibits NF-κB inflammatory signaling pathway activation in inflammatory bowel disease by targeting TLR2. Toxicol Appl Pharmacol. 2024;486:116922.

[40]Skovdahl HK, Granlund Av, ?stvik AE, et al. Expression of CCL20 and Its Corresponding Receptor CCR6 Is Enhanced in Active Inflammatory Bowel Disease, and TLR3 Mediates CCL20 Expression in Colonic Epithelial Cells. PLoS One. 2015;10(11):e0141710.

[41]Ostvik AE, Granlund AV, Bugge M, et al. Enhanced expression of CXCL10 in inflammatory bowel disease: potential role of mucosal Toll-like receptor 3 stimulation. Inflamm Bowel Dis. 2013;19(2):265-274.

[42]Li J, Dan W, Zhang C, et al. Exploration of Berberine Against Ulcerative Colitis via TLR4/NF-κB/HIF-1α Pathway by Bioinformatics and Experimental Validation. Drug Des Devel Ther. 2024;18:2847-2868.

[43]Zhu Z, Liao L, Gao M, Liu Q. Garlic-derived exosome-like nanovesicles alleviate dextran sulphate sodium-induced mouse colitis via the TLR4/MyD88/NF-κB pathway and gut microbiota modulation. Food Funct. 2023;14(16):7520-7534.

[44]Ma JP, Yao CZ, Jia ZQ, et al. TRIM52 aggravated inflammation and pyroptosis in dextran sulfate sodium-induced inflammatory bowel disease through activation of the TLR4/NF-κBs pathway. Allergol Immunopathol (Madr). 2023;51(1):159-167.

[45]Morgan ME, Koelink PJ, Zheng B, et al. Toll-like receptor 6 stimulation promotes T-helper 1 and 17 responses in gastrointestinal-associated lymphoid tissue and modulates murine experimental colitis. Mucosal Immunol. 2014;7(5):1266-1277.

[46]Yang JY, Kim MS, Kim E, et al. Enteric Viruses Ameliorate Gut Inflammation via Toll-like Receptor 3 and Toll-like Receptor 7-Mediated Interferon-β Production. Immunity. 2016;44(4):889-900.

[47]Atreya R, Bloom S, Scaldaferri F, et al. Clinical Effects of a Topically Applied Toll-like Receptor 9 Agonist in Active Moderate-to-Severe Ulcerative Colitis. J Crohns Colitis. 2016;10(11):1294-1302.

[48]Nemutlu Samur D, Ak?ay G, Y?ld?r?m S, et al. Vortioxetine ameliorates motor and cognitive impairments in the rotenone-induced Parkinson's disease via targeting TLR-2 mediated neuroinflammation. Neuropharmacology. 2022;208:108977.

[49]Yang J, Jia M, Zhang X, Wang P. Calycosin attenuates MPTP-induced Parkinson's disease by suppressing the activation of TLR/NF-κB and MAPK pathways. Phytother Res. 2019;33(2):309-318.

[50]Chen L, Hu L, Zhao J, et al. Chotosan improves Aβ1-42-induced cognitive impairment and neuroinflammatory and apoptotic responses through the inhibition of TLR-4/NF-κB signaling in mice. J Ethnopharmacol. 2016;191:398-407.

[51]Lee JY, Lee JD, Phipps S, Noakes PG, Woodruff TM. Absence of toll-like receptor 4 (TLR4) extends survival in the hSOD1 G93A mouse model of amyotrophic lateral sclerosis. J Neuroinflammation. 2015;12:90.

[52]Lehmann SM, Krüger C, Park B, et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. 2012;15(6):827-835.

[53]Lehmann SM, Rosenberger K, Krüger C, et al. Extracellularly delivered single-stranded viral RNA causes neurodegeneration dependent on TLR7. J Immunol. 2012;189(3):1448-1458.

[54]Iliev AI, Stringaris AK, Nau R, Neumann H. Neuronal injury mediated via stimulation of microglial toll-like receptor-9 (TLR9). FASEB J. 2004;18(2):412-414.

[55]Richard KL, Filali M, Préfontaine P, Rivest S. Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1-42 and delay the cognitive decline in a mouse model of Alzheimer's disease. J Neurosci. 2008;28(22):5784-5793.